
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Michael Sandoval
HPC Engineer - User Assistance Group
Oak Ridge Leadership Computing Facility (OLCF)
Oak Ridge National Laboratory (ORNL)

February 16, 2023

Python on Frontier

22

Overview

• What to Expect on Frontier

• Virtual Environments
– What are they and how do they work?
– Options on Frontier

• Inherent feature: venv
• Anaconda distribution: conda

• Using venv

• Installing and Using Miniconda

• General Best Practices

33

Moving to Frontier: What to Expect

The big takeaway….

• No more Power architecture, x86 is back!
– Easier to install from pre-compiled binaries
– Source installs are “easier”
– Plays nice with conda/mamba and pip

• Should play nicer with Slurm (see: Andes)

• GPU workflow is now the biggest hurdle with the switch to AMD
– Won’t be talking about this today

• Currently, no plans for Anaconda module, but please let us know at
help@olcf.ornl.gov if this would be better for your workflow.

mailto:help@olcf.ornl.gov

44

Virtual Environments

• What are they?
– Isolated directory trees that help you manage

various packages or different versions of
Python

• Why are they beneficial?
– Dependencies of one package might clash

with dependencies of another package
– Allows you to install new packages without

modifying a “base” installation
– Unique environments can be used on a per-

project basis

• We will only be discussing Python3
approaches Image credit: https://xkcd.com/1987/

Managing Python gets complicated sometimes….

55

Various Virtual Environment Options

• Native option to Python: venv environments
– Included with every installation
– Extends managing your current installation

• Anaconda distributions: conda environments
– Highly customizable environments with a large

repository of supported packages
– Not only for Python

• There’s also things like pyenv, pipenv, Poetry,
[insert fancy new niche manager here]…but
we won’t be covering those

66

What about on Frontier?

Two main options:

1. Use the cray-python module
– Supports venv syntax
– Comes with pre-installed packages like numpy, scipy, mpi4py

tuned for Cray machines

2. Install your own Miniconda
– Supports conda syntax
– Similar workflow to what is used on Andes, Summit

77

Comparing the options on Frontier

• cray-python module
– Pros:

• Works out of the box
• Don’t need to install any additional

things
• Pre-installed libraries tuned for Cray

machines
– Cons:

• Extremely minimal
• Highly dependent on pip
• Restricted to version of module
• Can’t switch between different Python

versions that easily using venv

• Personal Miniconda
– Pros:

• Let’s you manage multiple Python
versions, not just environments

• ”Easy” to install dependencies based
on your current environment

• Highly customizable
• Similar workflow across other OLCF

systems
– Cons:

• Not included on Frontier as a module,
must install yourself

• Can clash with loaded modules if not
careful

• Highly dependent on pre-compiled
binaries*

* can still use pip

88

The cray-python Module

• See what’s available:

• Version of module corresponds to version of Python:

[msandov1@login2.crusher ~]$ module -t avail cray-python
/opt/cray/pe/lmod/modulefiles/core:
cray-python/3.9.4.2
cray-python/3.9.7.1
cray-python/3.9.12.1*
cray-python/3.9.13.1*

[msandov1@login2.crusher ~]$ module load cray-python/3.9.4.2
[msandov1@login2.crusher ~]$ python3 -V
Python 3.9.4

[msandov1@login2.crusher ~]$ module swap cray-python/3.9.4.2 cray-python/3.9.13.1
[msandov1@login2.crusher ~]$ python3 -V
Python 3.9.13

* also on Frontier

99

The cray-python Module: venv

• Create virtual environments by doing:
python3 -m venv /path/to/my_env

• This creates a set of directories at the specified location, which will
contain everything unique to that virtual environment

• How to activate and deactivate the environment:
– From the command line: source /path/to/my_env/bin/activate
– From the command line: deactivate
– Using a shebang line : #!/path/to/my_env/bin/python3

• After activating, you can then install new packages using pip:
python3 -m pip install
pip install

1010

The cray-python Module: Installing with pip

• In general:
pip install <pkg>

• From source installs:
pip install --no-binary=<pkg> <pkg>

• Incorporating environment variables (e.g., gcc):
CC=gcc pip install <pkg>

• Ignore cache directory:
pip install --no-cache-dir <pkg>

• Upgrading packages (e.g., pip):
pip install --upgrade pip

• In general, safer to do:
/path/to/my_env/bin/python3 -m pip install …

1111

The cray-python Module: Workflow Example pt. I
Load cray-python module (default version), swap to GNU
$ module load cray-python
$ module swap PrgEnv-cray PrgEnv-gnu

Create a directory to hold my environments
$ mkdir $HOME/my_envs

Create a virtual environment called “mpi4py_env” in my environments folder
$ python3 -m venv $HOME/my_envs/mpi4py_env

Activate the virtual environment
$ source $HOME/my_envs/mpi4py_env/bin/activate

Install mpi4py
(mpi4py_env)$ MPICC="cc -shared" pip install --no-cache-dir --no-binary=mpi4py mpi4py

1212

The cray-python Module: Workflow Example pt. II
(mpi4py_env)$ pip list
Package Version
---------- -------
mpi4py 3.1.4
pip 22.0.4
setuptools 58.1.0

(mpi4py_env) $ salloc -A PROJ_ID -N 1 -t 00:05:00

(mpi4py_env) $ srun --pty python3

Python 3.9.12 (main, Apr 18 2022, 21:29:31)
[GCC 9.3.0 20200312 (Cray Inc.)] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> from mpi4py import MPI
>>> MPI.Get_library_version()
'MPI VERSION : CRAY MPICH version 8.1.17.7 (ANL base 3.4a2)\nMPI BUILD INFO : Fri
May 27 0:04 2022 (git hash 43e4dbe)\n'

1313

Installing Miniconda pt. 1

• If your workflow better suits conda environments, you can install your own
Miniconda: https://docs.conda.io/en/main/miniconda.html
– Also, please submit a ticket to help@olcf.ornl.gov saying that conda is better for your

workflow

• Install process:

-p specifies the prefix path for where to install miniconda

-u updates any current installations at the “-p” location (not necessary if
you didn’t do a “mkdir” beforehand)

$ mkdir miniconda_crusher/
$ cd miniconda_crusher/
$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ chmod u+x Miniconda3-latest-Linux-x86_64.sh
$./Miniconda3-latest-Linux-x86_64.sh -u -p ~/miniconda_crusher

https://docs.conda.io/en/main/miniconda.html
mailto:help@olcf.ornl.gov

1414

Installing Miniconda pt. 2
• While running the installer you will be prompted with something like this:

Do you wish the installer to initialize Miniconda3
by running conda init? [yes|no]

• If “yes”, your `.bashrc` (or equivalent shell configuration file) will be updated with something like
this:

• Warning: By default, this will always initialize conda upon login, which clashes with other Python
installations (e.g., if you use the anaconda modules on other OLCF systems). It is *MUCH SAFER* to
say “no” and to just export the PATH manually when on Frontier/Crusher to avoid clashing:
export PATH="/path/to/your/miniconda/bin:$PATH"

• Note: If your `.bashrc` already has a similar block of code (e.g., from other OLCF modules), then it
will *NOT* modify your `bashrc`

• Highly recommend this (only needs to be run once): conda config --set auto_activate_base false

>>> conda initialize >>>
!! Contents within this block are managed by 'conda init’ !!
.
.
.
#unset __conda_setup
<<< conda initialize <<<

1515

Using Conda Environments

• Activate your base environment first (if not already active):
source activate base
(must use “source activate” first, but can use “conda activate” after this step)

• Create Environments:
conda create -n my_env python=…
conda create -p /path/to/my_env python=…

• Activate/Deactivate Environments:
source activate /path/to/my_env or conda activate /path/to/my_env
source deactivate

• Install packages (can use default channel or explicit channel name):
conda install package_name or conda install -c conda-forge package_name

1616

More Conda Info

• See our Conda Basics guide with a quick-reference list here:
https://docs.olcf.ornl.gov/software/python/conda_basics.html#conda-
quick

• Conda’s official user guide:
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html

https://docs.olcf.ornl.gov/software/python/conda_basics.html
https://docs.olcf.ornl.gov/software/python/conda_basics.html
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html

1717

Best Practices - I

• Most default environment locations are at $HOME on NFS, be careful
storing things in $MEMBERWORK or $PROJWORK because it might get purged.
– For collaboration, you can instead use “Project Home”: /ccs/proj/<proj_id>

• Make note of your pip cache location by running: pip cache info
– May need to clean it from time-to-time with: pip cache purge

• Similarly, clean your conda cache occasionally: conda clean -a

• Explicitly use “python3” (or “python2”) instead of the “python” alias

1818

Best Practices - II

• In general, most python packages assume use of GCC
– Recommended to use PrgEnv-gnu , especially when building from source

• Deactivate virtual environments first before switching PrgEnv modules

• Deactivate virtual environments before entering batch/interactive jobs
– Some deactivation syntax won’t work properly if entering a job already activated
– Always better to enter any form of job with a fresh login shell and module

environment

• When submitting a batch job that uses virtual environments, it’s good to
submit like so:
sbatch --export=NONE submit.sl
This means you’ll have to activate all your modules / your virtual env in the batch script

1919

Best Practices - III

• Similar to Andes and Summit, it’s always recommended to “clone” the
base environment before trying to install packages.
– For venv:

python3 -m venv /path/to/new_env --system-site-packages
– Cloning with conda (does not really apply to Crusher/Frontier):

conda create -n new_env --clone base

• To “export”/“import” your current environment:
– For venv:

python3 -m pip freeze > requirements.txt
python3 -m pip install -r requirements.txt

– For conda:
conda env export > environment.yml
conda env create -f environment.yml

2020

2121

2222

Additional Resources

• Our OLCF Python docs:
https://docs.olcf.ornl.gov/software/python/index.html

• Official Python docs:
https://docs.python.org/3/library/venv.html

• Official Conda docs:
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html

• Submit a ticket to help@olcf.ornl.gov (especially if conda is required for
your workflow)

• Questions?

https://docs.olcf.ornl.gov/software/python/index.html
https://docs.python.org/3/library/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html
mailto:help@olcf.ornl.gov

